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Absence of the liquid phase when the attraction is not pairwise additive
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Recent work on charged colloidal suspensions with very low levels of added salt has suggested that although
pairs of the colloidal particles repel, clusters of the particles attract. Motivated by this, we study simple model
particles which have many-body attractions. These attractions are generic many-body attractions and are not
calculated for any specific colloidal suspension. We find that many-body attractions can stabilize solid phases
at low pressures but that the liquid phase is either completely absent from the equilibrium phase diagram or
present only within a small region of parameter space.

PACS numbd(s): 78.30.Cp, 82.70.Dd

I. INTRODUCTION tion in the fluid state. We are simply interested in the conse-

highly controversial, accurate measurements on isolateflynnot say anything quantitative about the suspensions of
pairs of the particles shows nothing but a pure repulfidn  pighiy charged colloidal particles. However, our results show
yet the particles form crystallites which appear to be metathat rather generally if pairs repel then a many-body attrac-
stable at close to zero osmotic pressite This is puzzling,  tion can still cause condensed phases to appear but that these
particles interacting via a pairwise additive, purely repulsivecondensed phases are much more likely to be solid rather
interaction should only form a solid phase at high osmoticthan liquid phases. This conclusion only relies on the attrac-
pressure, the spheres need to be pushed together against thgihs being many-body, it does not rely on, for example,
repulsion. The solid phase of hard spheres is certainly nawvhether or not the particles are charged.
metastable at low pressure. Thus the observation of the re- In order to keep our model of nonpairwise additive attrac-
pulsion of isolated pairs, and of the clustering of larger num-+ions as simple as possible, we generalize a simple van der
bers of spheres is inconsistent with a description of the inWaals-type model. This model is that of particles interacting
teraction of the colloidal particles via a pairwise additive via a hard-sphere repulsion and a long-range pair attraction.
potential of mean force. If we are to continue to describelt has been extensively studied, see RE9s:13. We simply
these systems as particles interacting via some potential generalize the long-range pairwise additive attraction to a
mean force, then we must relax our restriction to a pairwiséong-range attraction betweenparticles, i.e., am-body at-
additive potential of mean force and consider a many-bodyjraction. This is done in Sec. Il. In Sec. Il we apply the
potential [3]. We do this here. We consider simple, ratherstandard perturbation theory to obtain the contribution of the
generic, many-body attractions and calculate the phase baitractions to the free energy. Then in Sec. IV we show and
havior they lead too. We find that if pairs of particles repeldiscuss the phase behavior before ending with a conclusion,
but triplets attract that the phase behavior is qualitativelyS€c. V.
similar to that found for a conventional pairwise additive
attracti_on except that the region W_ithin Whi_ch the liquid Il POTENTIAL
phase is found is much smaller. If pairs and triplets repel but
four particles attract then there is no liquid phase at all; the Our potential consists of a hard-core interaction which is
attraction merely broadens the coexistence region betwegmairwise additive—the hard-sphere potential—plus an
the fluid and solid phases. The experiments find metastablebody attraction. The energy &f particles is
solid phases but no liquid phases, except for one, controver-
sial, result[4]. Ny N N

Here, we do not address the question of what is the origin V(I en) =V +Vo(rT €n), @)
of a purely repulsive interaction between pairs of particles N N )
but an attraction between larger numbers of particles. We d@herer™ denotes theéN position vectors of thé\ spherical
not attempt to derive the many-body attraction from the elecParticles, ande, is a measure of the strength of thébody
trostatic interactions between the charged colloids and thattraction. It is the sum of two termd/,s is the potential
counter and coions. However, there has been some work i@nergy ofN hard spheres, given by
which the existence, or nonexistence, and origin of many-
body interactions in suspensions of highly charged colloids
has been consideref®,6]. Also, van Roij, Dijkstra, and Vhs(rN) =
Hansen 7] have found both fluid-solid and fluid-fluid coex-
istence within an approximate theory. A different theory, that
of Levin, Barbosa, and Tamashif8] does not find a transi- where ¢, is the hard-sphere pair potential,

N| =

2 2 endlni—rh, )

i=1IN j=1N
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©, r<c Starling[14], and of Hall[15], respectively. So, we approxi-
Pns(r) = 0 > (3)  mate the Helmholtz free energy by that of hard sphéses
' 7 plus the energynot the free energyevaluated by assuming
that the configurations of the particles are unaffected by the

o is the hard-sphere diameté&f, is the energy of attraction ,
attraction,U

coming from ann-body attractive potentiad,,

| 1 A(N,V, T)=A4(N,V,T)+U(N,V). (7)
V = e = 1) 4

=07 2 2 eallnmndD. @ An. s given by

Then-fold sum is over thé\!/(N—n)! sets ofn out of theN Ans= —KTIN(Zps/ (NIANY)), (8)

particles formed by choosing one of tie particles to be

particle i, then one of the remainini—1 particles to be Where

particlej, ... and then one of th&l—n+1 particles as

particlel. The da_sh on the_sgm ovb'rndipates that the sum zhs:f exd — BVhe(rN)1drN 9
excludes terms in which=i,j, ... . This overcounts by a

fz;(t:rt]otrhofn. ast_lt Icou_nts ede_lf(]‘;h mtttara%tum ;lmes, eaclh tlge is the configuration integral foaN hard spheres in a volume
with the n particles in a différeént order. or example, 1or - ;- s the thermal volume of a particlél is given by
=2 it counts the interaction between particles numbers 11

and 103, for example, twice, onceias11, j =103 and once N N \

asi=103,j=11. For generah, the number of ways a set of f Va(r)exd — BVps(r™)]dr

n particles can be assigned to théndicesi, j, ..., lisn!. U= Z . (10
hs

The n-body attractive potentiap, is a nonpositive function

of the set ofn(n—1)/2 pair separations of the particles. If we substitute our expression fot,, Eq. (4), into Eq.

This set of scalar separations is denoted{loy—r,(}". The (10, e note that it is the sum afl!/(N—n)! equivalent
potential ¢, is symmetric with respect to exchanging any terms[16]. So

pair of then particles. We write it as the product of a strength

of attractione,, and a function/({|r;—r/}") which deter-

mines the dependence of the energy on the particle coordi- NI f Ba({Irj =} exd — BVp(r™)1dr™

nates U= (N=in! Zos ’
da({lrj =} =— e l({[r;— [}, 5 1D

where({ is a non-negative function of the set of pair separa-bUt the n-particle density of h?,f)d sphereﬁﬁl”s), and their

tions of then particles which we need not specify explicitly n-particle distribution functiongys', are defined a10]

but which must be long ranged, i.e, it decays to zero over

some characteristic range much larger than the hard-sphere pﬁ,';)(r”):<'H pﬁ,ls)(ri))gﬂ‘s)(r“)
diametero. For a configuration in which ati(n—1)/2 sepa- =1n

rations|r;—r,| are not much more than the hard-sphere di-

ameter,{({|r;—ri/}")=1. Then if one or more of the sepa- NT f exg — BVhs(rN)1drN-"
rations is increased tends to zero over a range which is = (12
much larger than the hard-sphere diameter. The integral of (N=n)! Zhs

over the positions of alh particles is proportional to the

-parti itvy (1) : i-
volumeV in the thermodynamic limit The one-particle densityy;,/(r), is not assumed to be uni

form so that the theory applies to solid as well as fluid
phases. Using, Eq12) in Eq. (11), we obtain
f LAl —rIMdr"=Vu,. (6)

1
U:—J ri—r ”( Wy, ) M (rmdrn,
v, is finite and a constant; it has dimensions of length to the n! Sl . 1 ig,n Prsri) |Gns (1)
power of 3(1—1). 13

We now use the long-range of the potentig to simplify
Eq. (13). As ¢, decays to zero only when the separations of

As the attraction is assumed to be long-ranged, i.e., with he particles are much larger than the integral forU is
range much larger than the hard-sphere diametewve may  dominated by configurations when the spheres are far apart,
use the van der Waals approximation of approximating the-€., wWhen alln(n—1)/2 pair separations are much larger
free energy by the free energy of a system interacting onwhan o. In a fluid the one-particle density is a constant,
via the repulsive part of the potential plus the energy ofp™=p, and at separations large with respecitdhe dis-
interaction due to the attractive part of the potential. Here thdribution function is close to ongiy=1. Thus in the fluid
system interacting only via the repulsions is that of hardphase the integrand of E¢L3) is simply approximated by
spheres, whose free energy in the fluid and solid phases apé ¢, . In a solid phase, although there are long-range corre-
accurately given by the approximations of Carnahan andations inpﬂg the one-particle density),ﬁls), averaged over a

Ill. THERMODYNAMIC FUNCTIONS
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unit cell is justp. The attractive interaction between particles 0.26

has a range much larger than the lattice constant of the lattice 0.21 |

and so¢, varies little across a unit cell and we can regard s

pﬁls)(r) as approximately constant at its average value, = 016}

Similarly, as we change any one of tineposition vectors 0.11

upon which then-body distribution functionp{”, depends 006 e\

the density oscillates rapidly over each unit cell but averages 00 01 02 03 04 05 06

to p. So, we approximatg{Y by p". Then the integrand of N

Eq. (13) is the same as in a fluid phasei¢,. So, we ap- FIG. 1. The phase diagram of hard spheres plus a long-range
proximategﬁ,r;) by one, andpﬁls) by p in Eq. (13 for both  pairwise additive attractiom=2. Thex axis is a reduced density,
fluid and solid phases, the volume fractionz, and they axis is a reduced temperature,

N 1/a,. The thick solid curves separate the one- and two-phase re-
U= P_J é ({| F—rdMdr” (14) gions. The letters V, L, and S denote the regions of the phase space
n! alllj— Tk ! occupied by the vapor, liquid, and solid phases, respectively. The
horizontal thin lines are tie lines connecting coexisting densities.
then using Egs(5) and(6) we obtain our final expression for

the energy Thus, thea,=0 limit is equivalent to th& — o limit. How-
Np" Le, v, ever, as the temperature decreaagsincrease_s. The firs'F
Us-————= —Nayp" KT, (15  effect this has is to widen the fluid-solid coexistence region
n: due to the fact that the denser solid phase has its chemical
potential and pressure lowered more than the less dense
fluid. But at sufficiently low temperature the pressure in a
single phase can become a nonmonotonic function of
= (16) density—the negative term due to attractions in the pressure,
nl g3k Eq. (18), creates a dip in the pressure—this is a van der
Waals loop and it indicates that there is phase separation into
dilute and dense phases of the same symmetry. The signature
of phase coexistence is a van der Waals loop as our theory is
Eq'a mean-field theory; it will therefore predict incorrect critical

wherep,=po? is a reduced density and

€nVn
an

is inversely proportional to the temperature.
Using our expression for the energy, Ef5), in the van
der Waals approximation for the Helmholtz free energy,

(7) yields exponents.
_ _ n—1 Forn=2, we have particles interacting via a hard-sphere
Balp.T)=Bandp) =~ anpr = (7 repulsion and a long-range pairwise additive attraction: es-
wherea=A/N andans=Ans/N. The pressure timas®, p,is  sentially the model postulated by van der Waals in the last
easily obtained by differentiating the free energy, Exy), century to describe the vapor-liquid transition. It, of course,
has a vapor-liquid transition, as can be seen in Fig. 1 which
Bp(p,T)=PBpns(p) —(N—L)anp;. (18 shows its phase behavior in the density-temperature plane.

There is a large temperature range over which there are co-

Phs is the pressure of hard spheres times The chemical existing dilute (vapo) and denseliquid) fluid phases: the
potential u is then obtained fromu=a+ p/p,. Knowledge temperature at the critical point is more than twice its value
of the pressure and chemical potential is enough to determingt the triple point. The critical point is the maximum in the
the phase diagram. vapor-liquid coexistence curve and occurs ad,* 0.18,

Forn=2, Eq.(17) reduces to a corrected version of the and the triple point temperature is the temperature at which
free energy derived by van der Waals 120 years agwapor, liquid, and solid phases coexist. It marks the lower
[9,10,17. By corrected we mean that van der Waals’ crudelimit of equilibrium vapor-liquid coexistence and occurs at
approximation for the free energy of particles interacting vial/a,=0.084.
a strong repulsion has been replaced by the free energy of Forn=3, although there is still equilibrium vapor-liquid
hard spheres. Van Kamp¢hl], and Lebowitz and Penrose coexistence, see Fig. 2, the temperature range over which it
[12] were able to show that #y, is exact, then Eq17) for  occurs is much reduced. At the critical and triple point tem-
n=2 is exact in the limit that the range of the attractive peratures, ¥3=0.20 and 0.17, respectively. The ratio be-
potential tends to infinity. For finite range it is a reliable and

very widely used approximation. 0.30
0.26 |
IV. PHASE BEHAVIOR o022t
Hard spheres freeze at high densities, i.e., they undergo a ~ 018 |
first-order transition to the solid pha§&0]. The transition 0.14 \
occurs between a fluid phase at a volume fractign 0.10 _—
0.0 0.1 02 0.3 04 05 06

=(m/6)pa®=0.49 and a solid phase at the higher volume
fraction »=0.55[17-19. This is the only transition in the
a,=0 limit. The «, are integrated strengths of attraction FIG. 2. The phase diagram of hard spheres plus a long-range
divided by temperature and sadd/is a reduced temperature. three-body attractiom=3. See the caption of Fig. 1 for details.

n
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0.96 spheres solidify and we see equilibrium fluid-fluid coexist-
0.76 ence. However, fon>2, the energy only becomes signifi-
N cant at higher densities and it decreases rapidly with
= 056 increasing density. The more rapid decrease with density of
0.36 many-body attractions directly favors the solid phase simply
TR i ——r— because it is more dense. This then broadens the fluid-solid
00 01 02 03 04 05 06 coexistence region to such an extent that the fluid-fluid tran-

n sition becomes metastable. Also, as the energy only de-

) creases at relatively high density for large the van der
FIG. 3. The phase diagram of hard spheres plus a long-rang@aa|s 10op is shifted to higher density; ultimately foe 6

four-body attraction. The letters F and S denote the regions of thfhe critical point is at such high density, a volume fraction

phase space occupied by the fluid and solid phases. The dashed 51 “that it is above the density at which the particles
curve is the coexistence curve for a vapor-liquid transition withinfreeze It is. therefore. not observable

the fluid-solid coexistence region. See the caption of Fig. 1 for

. To summarize: a combination of the increased stability of
further details.

the denser solid phase with respect to the less dense fluid
] ) phase, and the increasing density of the critical point drive
tween the two temperatures is only 1.2. The density at thene fluid-fluid transition metastable, then, as we continue to
critical point is also considerably higher than for a pairwiseincreasen, the critical density becomes so large that it ex-
additive attraction. ceeds the density at which hard spheres crystallize. Beyond

Forn=4 there is no equilibrium vapor-liquid coexistence, this point it is not possible to observe fluid-fluid coexistence.
see Fig. 3. At equilibrium there is only one phase transition:

the fluid-solid transition. The vapor-liquid transition has not V. CONCLUSION
disappeared without trace, however. Our mean-field pressure
in the fluid phase does develop a van der Waals loop at low
temperature and we can construct a vapor-liquid coexisten
curve within the fluid-solid coexistence region. This is plot-
ted as a dashed curve in Fig. 3. Note that the critical densi

We have shown that many-body attractions have a much
eaker tendency to induce separation of the fluid phase into
ilute (vapon and denseliquid) phases than do pairwise
tgdditive attractions. Indeed when not only pairs but triplets

is even higher than for a three-body attraction. The disapr particles interact via a pure repulsion and with only four

pearance of the equilibrium vapor-liquid coexistence is jusf’ More particles is there attraction, we found no equilibrium
what is observed when the range of a pairwise additive aicoexistence between dilute and dense fluid phases. There-

traction is reduced so that it is only about 10% or less of thd©'e: We expect that the findings for highly charged colloidal
hard-sphere diameter, see RgR0—23. particles are general in the following sense: if pairs of par-
For n larger than 4 the vapor-liquid transition moves ticles repel then some systems may still have an attraction

deeper into the fluid-solid coexistence region, the density ap€tween larger numbers of particles. This may cause the
the critical point increases with increasimg If n is made fluid-solid transition to broaden greatly and produce a solid

extremely large then a van der Waals loop appears in thghasle_ at much IO\r/]ve(rosmoti% presslljlreshthan in "’I‘ purely ]
pressure of thesolid phase. Byn=15 there is equilibrium repulsive system, however, there will either be_ only a sma
coexistence between two solid phases of the same symmetfgnge of parameters over which there is equilibrium fluid-

but different densities. This is just as has been found with id coexistence or no equilibrium fluid-fluid coexistence at
very short-range attraction, a few % of the hard-sphere dif’,‘”' Of course, th_ere are an_|nf|n|ty of pos.sm@ody attrac-
ameter{23]. tions and they will lead to different behavior in the same way

The physical interpretation of the phase behavior ithat different forms of pairwise attraction leads to different

straightforward. The energy per unit volume due to anPehavior. However, our results should apply to potentials

n-body attraction is proportional to the number of clusters ofNich a][e reaslon?]blyhsrgootﬂ andd_long ranged, i.e., with a
n particles where alh particles are close enough to each ralmge ot roug );]t eh ar 'S.pl ere |amﬁter olr more. We are
other to be within range of the attraction. It is this depen-&/S0 @ssuming that the particles are spherical.

dence which leads directly to th€' dependence of the en- Finally, there has 'be(.an a great deal of intere_st in the Qis-
ergy per unit volume. So, the larger thés, the smaller the appearance of the liquid phase as the potential is varied;
attention has focused on particles in which the range of a

Spairwise additive attraction is very shdr20-25. But for
other examples of liquid phases disappearing, see[R6¥.

he behavior we have found as we went from two to three to
éur-body attractions is qualitatively exactly the same as has
ngen found as the range of a pairwise additive attraction is
ade very short.

Whenn is small,n=2, the energy starts to become signifi-
cant at a relatively low density and it decreases gently, a
density squared. This creates a van der Waals loop in th
pressure at low density. The slow decrease in energy as de
sity increases allows the hard-sphere part of the free energﬂ?
to dominate at densities which are not too high. This means
that the pressure turns up at densities below freezing, so
allowing a stable liquid to coexist with the vapor. Fo+ 2 It is a pleasure to acknowledge discussions with D. Fren-
the van der Waals loop is below the density at which hardkel, B.-Y. Ha, and R. van Roij.
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