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Absence of the liquid phase when the attraction is not pairwise additive

Richard P. Sear
Department of Physics, University of Surrey, Guildford, Surrey GU2 5XH, United Kingdom

~Received 24 August 1999!

Recent work on charged colloidal suspensions with very low levels of added salt has suggested that although
pairs of the colloidal particles repel, clusters of the particles attract. Motivated by this, we study simple model
particles which have many-body attractions. These attractions are generic many-body attractions and are not
calculated for any specific colloidal suspension. We find that many-body attractions can stabilize solid phases
at low pressures but that the liquid phase is either completely absent from the equilibrium phase diagram or
present only within a small region of parameter space.

PACS number~s!: 78.30.Cp, 82.70.Dd
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I. INTRODUCTION

Although the behavior of suspensions of highly charg
colloidal particles at very low added salt concentrations
highly controversial, accurate measurements on isola
pairs of the particles shows nothing but a pure repulsion@1#
yet the particles form crystallites which appear to be me
stable at close to zero osmotic pressure@2#. This is puzzling,
particles interacting via a pairwise additive, purely repuls
interaction should only form a solid phase at high osmo
pressure, the spheres need to be pushed together agains
repulsion. The solid phase of hard spheres is certainly
metastable at low pressure. Thus the observation of the
pulsion of isolated pairs, and of the clustering of larger nu
bers of spheres is inconsistent with a description of the
teraction of the colloidal particles via a pairwise additi
potential of mean force. If we are to continue to descr
these systems as particles interacting via some potentia
mean force, then we must relax our restriction to a pairw
additive potential of mean force and consider a many-b
potential @3#. We do this here. We consider simple, rath
generic, many-body attractions and calculate the phase
havior they lead too. We find that if pairs of particles rep
but triplets attract that the phase behavior is qualitativ
similar to that found for a conventional pairwise additi
attraction except that the region within which the liqu
phase is found is much smaller. If pairs and triplets repel
four particles attract then there is no liquid phase at all;
attraction merely broadens the coexistence region betw
the fluid and solid phases. The experiments find metast
solid phases but no liquid phases, except for one, contro
sial, result@4#.

Here, we do not address the question of what is the or
of a purely repulsive interaction between pairs of partic
but an attraction between larger numbers of particles. We
not attempt to derive the many-body attraction from the el
trostatic interactions between the charged colloids and
counter and coions. However, there has been some wor
which the existence, or nonexistence, and origin of ma
body interactions in suspensions of highly charged collo
has been considered@5,6#. Also, van Roij, Dijkstra, and
Hansen@7# have found both fluid-solid and fluid-fluid coex
istence within an approximate theory. A different theory, th
of Levin, Barbosa, and Tamashiro@8# does not find a transi
PRE 611063-651X/2000/61~1!/651~5!/$15.00
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tion in the fluid state. We are simply interested in the con
quences, particularly the phase behavior, of many body
tractions. Because we have not derived our interact
potentials from the underlying electrostatic interactions
cannot say anything quantitative about the suspension
highly charged colloidal particles. However, our results sh
that rather generally if pairs repel then a many-body attr
tion can still cause condensed phases to appear but that
condensed phases are much more likely to be solid ra
than liquid phases. This conclusion only relies on the attr
tions being many-body, it does not rely on, for examp
whether or not the particles are charged.

In order to keep our model of nonpairwise additive attra
tions as simple as possible, we generalize a simple van
Waals-type model. This model is that of particles interact
via a hard-sphere repulsion and a long-range pair attract
It has been extensively studied, see Refs.@9–13#. We simply
generalize the long-range pairwise additive attraction to
long-range attraction betweenn particles, i.e., ann-body at-
traction. This is done in Sec. II. In Sec. III we apply th
standard perturbation theory to obtain the contribution of
attractions to the free energy. Then in Sec. IV we show a
discuss the phase behavior before ending with a conclus
Sec. V.

II. POTENTIAL

Our potential consists of a hard-core interaction which
pairwise additive—the hard-sphere potential—plus
n-body attraction. The energy ofN particles is

V~rN,en!5Vhs~rN!1Va~rN,en!, ~1!

whererN denotes theN position vectors of theN spherical
particles, anden is a measure of the strength of then-body
attraction. It is the sum of two terms.Vhs is the potential
energy ofN hard spheres, given by

Vhs~rN!5
1

2 (
i 51,N

(
j 51,N

8 fhs~ ur i2r j u!, ~2!

wherefhs is the hard-sphere pair potential,
651 ©2000 The American Physical Society
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fhs~r !5H `, r<s

0, r .s,
~3!

s is the hard-sphere diameter.Va is the energy of attraction
coming from ann-body attractive potentialfa ,

Va~rN!5
1

n! (
i 51,N

••• (
l 51,N

8 fa~$ur j2r ku%n!. ~4!

Then-fold sum is over theN!/(N2n)! sets ofn out of theN
particles formed by choosing one of theN particles to be
particle i, then one of the remainingN21 particles to be
particle j, . . . and then one of theN2n11 particles as
particle l. The dash on the sum overl indicates that the sum
excludes terms in whichl 5 i , j , . . . . This overcounts by a
factor ofn! as it counts each interactionn! times, each time
with the n particles in a different order. For example, forn
52 it counts the interaction between particles numbers
and 103, for example, twice, once asi 511, j 5103 and once
asi 5103, j 511. For generaln, the number of ways a set o
n particles can be assigned to then indicesi, j, . . . , l is n!.
The n-body attractive potentialfa is a nonpositive function
of the set ofn(n21)/2 pair separations of then particles.
This set of scalar separations is denoted by$ur j2r ku%n. The
potential fa is symmetric with respect to exchanging a
pair of then particles. We write it as the product of a streng
of attractionen , and a functionz($ur j2r ku%n) which deter-
mines the dependence of the energy on the particle coo
nates

fa~$ur j2r ku%n!52enz~$ur j2r ku%n!, ~5!

wherez is a non-negative function of the set of pair sepa
tions of then particles which we need not specify explicit
but which must be long ranged, i.e, it decays to zero o
some characteristic range much larger than the hard-sp
diameters. For a configuration in which alln(n21)/2 sepa-
rationsur j2r ku are not much more than the hard-sphere
ameter,z($ur j2r ku%n)&1. Then if one or more of the sepa
rations is increasedz tends to zero over a range which
much larger than the hard-sphere diameter. The integralz
over the positions of alln particles is proportional to the
volumeV in the thermodynamic limit

E z~$ur j2r ku%n!drn5Vnn . ~6!

nn is finite and a constant; it has dimensions of length to
power of 3(n21).

III. THERMODYNAMIC FUNCTIONS

As the attraction is assumed to be long-ranged, i.e., wi
range much larger than the hard-sphere diameters, we may
use the van der Waals approximation of approximating
free energy by the free energy of a system interacting o
via the repulsive part of the potential plus the energy
interaction due to the attractive part of the potential. Here
system interacting only via the repulsions is that of ha
spheres, whose free energy in the fluid and solid phases
accurately given by the approximations of Carnahan
1
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Starling@14#, and of Hall@15#, respectively. So, we approxi
mate the Helmholtz free energy by that of hard spheresAhs ,
plus the energy~not the free energy! evaluated by assuming
that the configurations of the particles are unaffected by
attraction,U

A~N,V,T!5Ahs~N,V,T!1U~N,V!. ~7!

Ahs is given by

Ahs52kT ln„Zhs /~N!LN!…, ~8!

where

Zhs5E exp@2bVhs~rN!#drN ~9!

is the configuration integral forN hard spheres in a volum
V. L is the thermal volume of a particle.U is given by

U5

E Va~rN!exp@2bVhs~rN!#drN

Zhs
. ~10!

If we substitute our expression forVa , Eq. ~4!, into Eq.
~10! we note that it is the sum ofN!/(N2n)! equivalent
terms@16#. So,

U5
N!

~N2n!!n!

E fa~$ur j2r ku%n!exp@2bVhs~rN!#drN

Zhs
,

~11!

but the n-particle density of hard spheres,rhs
(n) , and their

n-particle distribution function,ghs
(n) , are defined as@10#

rhs
(n)~rn!5S )

i 51,n
rhs

(1)~r i ! Dghs
(n)~rn!

5
N!

~N2n!!

E exp@2bVhs~rN!#drN2n

Zhs
. ~12!

The one-particle density,rhs
(1)(r ), is not assumed to be uni

form so that the theory applies to solid as well as flu
phases. Using, Eq.~12! in Eq. ~11!, we obtain

U5
1

n! E fa~$ur j2r ku%n!S )
i 51,n

rhs
(1)~r i ! Dghs

(n)~rn!drn.

~13!

We now use the long-range of the potentialfa to simplify
Eq. ~13!. As fa decays to zero only when the separations
the particles are much larger thans, the integral forU is
dominated by configurations when the spheres are far ap
i.e., when alln(n21)/2 pair separations are much larg
than s. In a fluid the one-particle density is a consta
r (1)5r, and at separations large with respect tos the dis-
tribution function is close to one,ghs

(n).1. Thus in the fluid
phase the integrand of Eq.~13! is simply approximated by
rnfa . In a solid phase, although there are long-range co
lations inrhs

(n) the one-particle density,rhs
(1) , averaged over a
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PRE 61 653ABSENCE OF THE LIQUID PHASE WHEN THE . . .
unit cell is justr. The attractive interaction between particl
has a range much larger than the lattice constant of the la
and sofa varies little across a unit cell and we can rega
rhs

(1)(r ) as approximately constant at its average value,r.
Similarly, as we change any one of then-position vectors
upon which then-body distribution function,rhs

(n) , depends
the density oscillates rapidly over each unit cell but avera
to r. So, we approximaterhs

(n) by rn. Then the integrand o
Eq. ~13! is the same as in a fluid phase,rnfa . So, we ap-
proximateghs

(n) by one, andrhs
(1) by r in Eq. ~13! for both

fluid and solid phases,

U5
rn

n! E fa~$ur j2r k%
n!drn, ~14!

then using Eqs.~5! and~6! we obtain our final expression fo
the energy

U52
Nrn21ennn

n!
52Nanr r

n21kT, ~15!

wherer r5rs3 is a reduced density and

an5
ennn

n!s3(n21)kT
, ~16!

is inversely proportional to the temperature.
Using our expression for the energy, Eq.~15!, in the van

der Waals approximation for the Helmholtz free energy, E
~7! yields

ba~r,T!5bahs~r!2anr r
n21 , ~17!

wherea5A/N andahs5Ahs /N. The pressure timess3, p, is
easily obtained by differentiating the free energy, Eq.~17!,

bp~r,T!5bphs~r!2~n21!anr r
n . ~18!

phs is the pressure of hard spheres timess3. The chemical
potentialm is then obtained fromm5a1p/r r . Knowledge
of the pressure and chemical potential is enough to determ
the phase diagram.

For n52, Eq. ~17! reduces to a corrected version of th
free energy derived by van der Waals 120 years
@9,10,12#. By corrected we mean that van der Waals’ cru
approximation for the free energy of particles interacting
a strong repulsion has been replaced by the free energ
hard spheres. Van Kampen@11#, and Lebowitz and Penros
@12# were able to show that ifahs is exact, then Eq.~17! for
n52 is exact in the limit that the range of the attracti
potential tends to infinity. For finite range it is a reliable a
very widely used approximation.

IV. PHASE BEHAVIOR

Hard spheres freeze at high densities, i.e., they under
first-order transition to the solid phase@10#. The transition
occurs between a fluid phase at a volume fractionh
5(p/6)rs350.49 and a solid phase at the higher volum
fraction h50.55 @17–19#. This is the only transition in the
an50 limit. The an are integrated strengths of attractio
divided by temperature and so 1/an is a reduced temperature
ce
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Thus, thean50 limit is equivalent to theT→` limit. How-
ever, as the temperature decreasesan increases. The firs
effect this has is to widen the fluid-solid coexistence reg
due to the fact that the denser solid phase has its chem
potential and pressure lowered more than the less de
fluid. But at sufficiently low temperature the pressure in
single phase can become a nonmonotonic function
density—the negative term due to attractions in the press
Eq. ~18!, creates a dip in the pressure—this is a van
Waals loop and it indicates that there is phase separation
dilute and dense phases of the same symmetry. The sign
of phase coexistence is a van der Waals loop as our theo
a mean-field theory; it will therefore predict incorrect critic
exponents.

For n52, we have particles interacting via a hard-sphe
repulsion and a long-range pairwise additive attraction:
sentially the model postulated by van der Waals in the
century to describe the vapor-liquid transition. It, of cours
has a vapor-liquid transition, as can be seen in Fig. 1 wh
shows its phase behavior in the density-temperature pl
There is a large temperature range over which there are
existing dilute ~vapor! and dense~liquid! fluid phases: the
temperature at the critical point is more than twice its va
at the triple point. The critical point is the maximum in th
vapor-liquid coexistence curve and occurs at 1/a250.18,
and the triple point temperature is the temperature at wh
vapor, liquid, and solid phases coexist. It marks the low
limit of equilibrium vapor-liquid coexistence and occurs
1/a250.084.

For n53, although there is still equilibrium vapor-liquid
coexistence, see Fig. 2, the temperature range over whi
occurs is much reduced. At the critical and triple point te
peratures, 1/a350.20 and 0.17, respectively. The ratio b

FIG. 1. The phase diagram of hard spheres plus a long-ra
pairwise additive attraction,n52. Thex axis is a reduced density
the volume fractionh, and they axis is a reduced temperature
1/a2. The thick solid curves separate the one- and two-phase
gions. The letters V, L, and S denote the regions of the phase s
occupied by the vapor, liquid, and solid phases, respectively.
horizontal thin lines are tie lines connecting coexisting densitie

FIG. 2. The phase diagram of hard spheres plus a long-ra
three-body attraction,n53. See the caption of Fig. 1 for details.
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654 PRE 61RICHARD P. SEAR
tween the two temperatures is only 1.2. The density at
critical point is also considerably higher than for a pairw
additive attraction.

Forn54 there is no equilibrium vapor-liquid coexistenc
see Fig. 3. At equilibrium there is only one phase transiti
the fluid-solid transition. The vapor-liquid transition has n
disappeared without trace, however. Our mean-field pres
in the fluid phase does develop a van der Waals loop at
temperature and we can construct a vapor-liquid coexiste
curvewithin the fluid-solid coexistence region. This is plo
ted as a dashed curve in Fig. 3. Note that the critical den
is even higher than for a three-body attraction. The dis
pearance of the equilibrium vapor-liquid coexistence is j
what is observed when the range of a pairwise additive
traction is reduced so that it is only about 10% or less of
hard-sphere diameter, see Refs.@20–25#.

For n larger than 4, the vapor-liquid transition move
deeper into the fluid-solid coexistence region, the densit
the critical point increases with increasingn. If n is made
extremely large then a van der Waals loop appears in
pressure of thesolid phase. Byn515 there is equilibrium
coexistence between two solid phases of the same symm
but different densities. This is just as has been found wit
very short-range attraction, a few % of the hard-sphere
ameter@23#.

The physical interpretation of the phase behavior
straightforward. The energy per unit volume due to
n-body attraction is proportional to the number of clusters
n particles where alln particles are close enough to ea
other to be within range of the attraction. It is this depe
dence which leads directly to thern dependence of the en
ergy per unit volume. So, the larger then is, the smaller the
number of clusters ofn particles at low density and the mor
rapidly the number of clusters grows as density increa
Whenn is small,n52, the energy starts to become signi
cant at a relatively low density and it decreases gently
density squared. This creates a van der Waals loop in
pressure at low density. The slow decrease in energy as
sity increases allows the hard-sphere part of the free en
to dominate at densities which are not too high. This me
that the pressure turns up at densities below freezing
allowing a stable liquid to coexist with the vapor. Forn52
the van der Waals loop is below the density at which ha

FIG. 3. The phase diagram of hard spheres plus a long-ra
four-body attraction. The letters F and S denote the regions of
phase space occupied by the fluid and solid phases. The da
curve is the coexistence curve for a vapor-liquid transition wit
the fluid-solid coexistence region. See the caption of Fig. 1
further details.
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spheres solidify and we see equilibrium fluid-fluid coexi
ence. However, forn.2, the energy only becomes signifi
cant at higher densities and it decreases rapidly w
increasing density. The more rapid decrease with densit
many-body attractions directly favors the solid phase sim
because it is more dense. This then broadens the fluid-s
coexistence region to such an extent that the fluid-fluid tr
sition becomes metastable. Also, as the energy only
creases at relatively high density for largen, the van der
Waals loop is shifted to higher density; ultimately forn56
the critical point is at such high density, a volume fracti
h50.51, that it is above the density at which the partic
freeze. It is, therefore, not observable.

To summarize: a combination of the increased stability
the denser solid phase with respect to the less dense
phase, and the increasing density of the critical point dr
the fluid-fluid transition metastable, then, as we continue
increasen, the critical density becomes so large that it e
ceeds the density at which hard spheres crystallize. Bey
this point it is not possible to observe fluid-fluid coexistenc

V. CONCLUSION

We have shown that many-body attractions have a m
weaker tendency to induce separation of the fluid phase
dilute ~vapor! and dense~liquid! phases than do pairwis
additive attractions. Indeed when not only pairs but tripl
of particles interact via a pure repulsion and with only fo
or more particles is there attraction, we found no equilibriu
coexistence between dilute and dense fluid phases. Th
fore, we expect that the findings for highly charged colloid
particles are general in the following sense: if pairs of p
ticles repel then some systems may still have an attrac
between larger numbers of particles. This may cause
fluid-solid transition to broaden greatly and produce a so
phase at much lower~osmotic! pressures than in a purel
repulsive system, however, there will either be only a sm
range of parameters over which there is equilibrium flu
fluid coexistence or no equilibrium fluid-fluid coexistence
all. Of course, there are an infinity of possiblen-body attrac-
tions and they will lead to different behavior in the same w
that different forms of pairwise attraction leads to differe
behavior. However, our results should apply to potenti
which are reasonably smooth and long ranged, i.e., wit
range of roughly the hard-sphere diameter or more. We
also assuming that the particles are spherical.

Finally, there has been a great deal of interest in the
appearance of the liquid phase as the potential is var
attention has focused on particles in which the range o
pairwise additive attraction is very short@20–25#. But for
other examples of liquid phases disappearing, see Ref.@26#.
The behavior we have found as we went from two to three
four-body attractions is qualitatively exactly the same as
been found as the range of a pairwise additive attractio
made very short.
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